Programming and Problem solving Lecture 4
 Hanady S.Ahmed

Programming in C++

There are multiple compilers and text editors could be used to run C++ programming. These may differ from system to system. We will use CodeBlockes editor in this course.

3.1Basic Input/Output

Cin : standard input stream
1 int age;
2 cin >> age
Cout : standard output stream
1 cout << "Output sentence"; // prints Output sentence on
screen
2 cout << 120; // prints number 120 on screen
3 cout << x; // prints the value of x on
screen

```
\Simple input/output program:
// input output example
#include <iostream>
using namespace std;
int main ()
{
        int a,b;
        cout << "Please enter the first number: ";
        cin >> a;
        cout << " Please enter the second number: "<< b;
        cin>> b;
            return 0;
}
```


3.2Arithmetic Operators

There are following arithmetic operators supported by $\mathrm{C}++$ language Assume variable A holds 10 and variable B holds 20, then

Operator	Description	Example
+	Adds two operands	A + B will give 30
-	Subtracts second operand from the first	A - B will give -10
$*$	Multiplies both operands	A * B will give 200
$/$	Divides numerator by de- numerator Modulus \quad B A will give 2 remainder of after an integer division \quad and	B \% A will give 0
\%	Increment operator, increases integer value by one	A++ will give 11
++	Decrement operator, decreases integer value by one	A-- will give 9
--		

```
\// c++ arithmetic
    #include <iostream>
    using namespace std;
    int main()
    {
        float biscuit;
        int babies;
        cout << "Enter a number: ";
        cin >> biscuit;
        cout << "Enter another number: ";
        cin >> babies;
    cout << " biscuit = " << biscuit << "; babies = " << babies <<
endl;
    cout << " biscuit + babies = " << biscuit + babies << endl;
    cout << " biscuit - babies = " << biscuit - babies << endl;
    cout << " biscuit * babies = " << biscuit * babies << endl;
    cout << " biscuit / babies = " << biscuit / babies << endl;
```

Hanady S. Ahmed
return 0;

3.3Relational Operators

There are following relational operators supported by C++ language Assume variable A holds 10 and variable B holds 20, then -

Operator	Description	Example
$==$	Checks if the values of two operands are equal or not, if yes then condition becomes true.	$(\mathrm{A}==\mathrm{B})$ is not true.
$!=$	Checks if the values of two operands are equal or not, if values are not equal then condition becomes true.	
	Checks if the value of left operand is greater than the value of right operand, if yes true. condition becomes true.	$(\mathrm{A}>\mathrm{B})$ is not true.
<	Checks if the value of left operand is less than the value of right operand, if yes then condition becomes true.	$(\mathrm{A}<\mathrm{B})$ is true.
$>=$	Checks if the value of left operand is greater than or equal to the value of right operand, if yes then condition becomes true.	$(\mathrm{A}>=\mathrm{B})$ is not true.
$>$	Checks if the value of left operand is less than or equal to the value of right operand, if yes then condition becomes true.	$(\mathrm{A}<=\mathrm{B})$ is true.
<=		

relational operators \#include<iostream>

Hanady S. Ahmed

```
    using namespace std;
    int main()
    {
int a=10,b=20,c=10;
if(a>b)
    cout<<"a is greater"<<endl;
if(a<b)
    cout<<"a is smaller"<<endl;
if(a<=c)
    cout<<"a is less than/equal to c"<<endl;
if(a>=c)
    cout<<"a is less than/equal to c"<<endl;
return 0;}
```


3.4Logical Operators

There are following logical operators supported by $\mathrm{C}++$ language.
Assume variable A holds 1 and variable B holds 0 , then -

Operator	Description	Example		
$\& \&$	Called Logical AND operator. If both the operands are non-zero, then condition becomes true.	$(\mathrm{A} \& \& \mathrm{~B})$ is false.		
\\|	Called Logical OR Operator. If any of the two operands is non- zero, then condition becomes true.	$(\mathrm{A} \\| \mathrm{B})$ is true.		
!	Called Logical NOT Operator. Use to reverses the logical state of its operand. If a condition is true, then Logical NOT operator will make false.	!(A \&\& B) is true.		
// Logical operators				
include <iostream> using namespace std;				

Hanady S. Ahmed

```
    int main()
{
    cout << "Enter a number: ";
    int value;
    cin >> value ;
    if (value > 10 && value < 20)
            cout << "Your value is between 10 and 20" << endl;
    else
            cout << "Your value is not between 10 and 20" << endl;
    return 0;
```

\}

3.5Bitwise Operators

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for \&, \mid, and ${ }^{\wedge}$ are as follows -

p	q	$\mathrm{p} \& \mathrm{q}$	$\mathrm{p} \mid \mathrm{q}$	$\mathrm{p}^{\wedge} \mathrm{q}$
0	0	0	0	0
0	1	0	1	1
1	1	1	1	0
1	0	0	1	1

Assume if $\mathrm{A}=60$; and $\mathrm{B}=13$; now in binary format they will be as follows
$A=00111100$
$B=00001101$
\qquad
$A \& B=00001100$
$\mathrm{A} \mid \mathrm{B}=00111101$
$\mathrm{A}^{\wedge} \mathrm{B}=00110001$


```
    using namespace std;
    int main()
    {
        // 12=0000 1100
        unsigned int num1 = 12
        int num2 = 0;
        num2 = ~num1;
        cout << "Value of num2 is: " << num2 << endl ;
        return 0;
}
\square
        #include <iostream>
            using namespace std;
        int main()
        {
        unsigned int num1 = 10; // 10 = 0000 1010
        unsigned int num2 = 12; // 12 = 0000 1100
        int num3 = 0;
        num3 = num1 & num2; // 8 = 0000 1000
        cout << "Value of num3 is : " << num3 << endl ;
    return 0;
}
```


3.6Mathematical Functions

$\mathrm{C}++$ provides various mathematical functions like $\log (), \operatorname{modf}(), \operatorname{pow}(), \operatorname{sqrt}()$, $\sin (), \cos (), \operatorname{abs}()$ etc. that aid in mathematical calculations. <math.h> library should be called.


```
    Short int si = 100;
    int i = -1000;
    long int li = 8;
    float f = 230.47;
    double d = 200.347;
    cout<<"sqrt(si): "<<sqrt(si)<<endl;
    cout<<"pow(li, 3): "<<pow(li, 3)<<endl;
    cout<<"sin(d): "<<sin(d)<<endl;
    cout<<"abs(i) : "<<abs(i)<<endl;
    cout<<"floor(d): "<<floor(d)<<endl;
    cout<<"sqrt(f): "<<sqrt(f)<<endl;
    cout<<"pow(d, 2): "<<pow(d, 2)<<endl;
        return 0;
}
The output of the above C++ program
pow(li, 3): 512
sin(d):-0.6555
pow(d, 2): 40138.92
```

sqrt(si): 10
abs(i) : 1000
floor(d): 200
sqrt(f):15.181

